Verb Class Disambiguation Using Informative Priors
نویسندگان
چکیده
Levin’s (1993) study of verb classes is a widely used resource for lexical semantics. In her framework, some verbs, such as give, exhibit no class ambiguity. But other verbs, such as write, have several alternative classes. We extend Levin’s inventory to a simple statistical model of verb class ambiguity. Using this model we are able to generate preferences for ambiguous verbs without the use of a disambiguated corpus. We additionally show that these preferences are useful as priors for a verb sense disambiguator.
منابع مشابه
Class-based approach to disambiguating Levin verbs
Lapata and Brew (2004) (hereafter LB04) obtain from untagged texts a statistical prior model that is able to generate class preferences for ambiguous Levin (1993) verbs (hereafter Levin). They also show that their informative priors, incorporated into a Naive Bayes classifier deduced from hand-tagged data, can aid in verb class disambiguation. We reanalyse LB04’s prior model and show that a sin...
متن کاملDisambiguating Levin Verbs Using Untagged Data
Lapata and Brew [8] (hereafter LB04) obtain from untagged texts a statistical prior model that is able to generate class preferences for ambiguous Levin [9] verbs. They also show that their informative priors, incorporated into a Naive Bayesian classifier deduced from handtagged data, can aid in verb class disambiguation. We re-examine the parameter estimation of LB04’s prior model and identify...
متن کاملAn Unsupervised Verb Class Disambiguation
We present an unsupervised learning method for disambiguating verbs that belong to more than one Levin verb class (1993) when occurring in a particular syntactic frame. We used examples that contain unambiguous verbs in each verb class as the training data for ambiguous verbs in that class. A Naive Bayesian classifier was employed for the disambiguation task using context words as features. Our...
متن کاملMixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditio...
متن کاملEstimating Class Priors in Domain Adaptation for Word Sense Disambiguation
Instances of a word drawn from different domains may have different sense priors (the proportions of the different senses of a word). This in turn affects the accuracy of word sense disambiguation (WSD) systems trained and applied on different domains. This paper presents a method to estimate the sense priors of words drawn from a new domain, and highlights the importance of using well calibrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Linguistics
دوره 30 شماره
صفحات -
تاریخ انتشار 2004